eservation

of the

Jeff Rothenberg

r . igital informational artifacts, including records,
s documents, and data, share a number of core dig-
4 ital capabilities that give them irresistible advan-

tages over traditional paper artifacts. First, they can
be copied perfectly, which allows them to be distributed and dis-
seminated widely and accessed remotely. In addition, records and
information managers can search their contents, extract content
from them, reformat, transform, and process them in ways that are
unthinkable for non-digital artifacts. Beyond these core attributes,
many digital artifacts possess inherently digital capabilities, such as
dynamic, distributed, active, and interactive behavior — facilities
that traditional artifacts simply cannot provide.

Yet all these capabilities derive from
the fact that digital artifacts are encod-
ed, which — although it makes them
understandable to machines — makes

This article examines:

+ Emulation in the context of other them unintelligible to humans without
proposed solutions to digital additional interpretation. It is as if
preservation they were written in invisible ink.

Rendering them human-readable gen-
of using emulation to preserve erally requires running programs on
digital artifacts computers, especially for those inher-
ently digital artifacts that use complex,
executable formats. Furthermore,
whereas simple page image artifacts
can be printed on paper, inherently
digital artifacts cannot be converted to
non-digital form without losing essential aspects of their behav-
ior, not to mention their “look and feel.” This means that digital
artifacts must generally be preserved in executable, digital form.

Preserving digital artifacts therefore requires not only saving
the bitstreams that represent them but also retaining the ability
to interpret those bitstreams properly in the future to recreate
their intended behavior. Saving bits is problematic because most

+ The advantages and challenges

+ Two alternative approaches to
running emulators on computers
in the far future




Times

digital storage media become physically unreadable or obsolete
rather quickly. But the greater challenge of long-term digital
preservation is interpreting bitstreams correctly in the future.
Each digital format — corresponding to a given standard or an
application program — requires different interpretation, and
although a few dozen formats may account for most digital arti-
facts, there are thousands of other formats whose importance
may become apparent only in the future.

(_onsider the OPtions

A number of solutions to this problem have been proposed.
Among them are:

* Do nothing. This argues that most information isn’t worth
saving anyway.

+ Let the future worry about it (“digital archeology”). This
requires future managers and researchers to bear the cost of
understanding whatever they care about. Yet even using
sophisticated cryptographic techniques, future users will be
far less able to decipher digital artifacts than those who were
able to read hieroglyphics during the 13 centuries prior to
discovering the Rosetta Stone.

+ Use standard or “canonical” digital formats for everything.
This can help for a decade or so, but in the long term it
assumes that future software will be able to render such stan-
dard formats. Yet it is reasonable to expect that all such for-
mats eventually become obsolete, and it is impractical to
enforce their use in any case.

* Repeatedly convert artifacts into future formats (“migra-
tion”). This is the obvious choice for records or other artifacts
that remain “active” and so must be converted into current
forms to be usable. But for the long term — and with the vast
majority of artifacts — it is impractical. Converting every artifact

represented in every arbitrarily complex, executable
format would be extremely labor-intensive and may
not even be possible across paradigm shifts. Moreover,

every conversion loses or corrupts meaning, so the

cumulative result of this approach must ultimately be
gibberish. Finally, this does not even attempt to pre-
serve digital artifacts in their original forms.

Replace artifacts by formal descrip-
tions. In principle, this is a very
attractive approach, but it requires
formally encoding all of a digital
artifact’s attributes that might ever

be of interest, though it is impossi-
ble to predict all of these. Nor do
we yet know how to encode most of
the behavioral aspects of inherently
digital artifacts.

Rely on “viewer” programs to con-
tinue to render old formats.
Although this may sound feasible,
writing and maintaining such viewers
for every format that might be of
interest requires considerable effort,
and their correctness will always be
questionable, especially as they are
continually rewritten for future
computers.

Rely on a digital artifact’s
original software to ren-
der it. Since its original
software defines an arti-
fact’s format, this is the
only way to truly preserve



—

P

mulation is the use of a new computer to

“imPersonate” an old comPuter. ]n other words, an

Cmulator s B Program that runs on the Nnew comPutcr

and makes it behave like the old comPuter.

the artifact’s original behavior. (Preserving “reader” software is
sufficient for this purpose unless there is a need to preserve a
record of the original authoring capabilities that were avail-
able.) Although this requires saving application and system
software as well as the artifact itself, these are all just bitstreams.
Unlike most other approaches, this does not require writing
new programs for each format and processing each artifact to
be saved. It does, however, require running software long after
the original hardware on which it ran has become obsolete. In
addition, since this preserves each digital artifact in its original
form, it must provide a way of extracting the artifact’s contents
for use in future computing environments.

Two approaches have been proposed to enable running orig-
inal software in the future. One is to save obsolete computers in
museums where they could continue to be used; unfortunately
this is highly impractical, ignores the short physical lifespan of
most digital storage media, and would undermine the core dig-
ital attributes of saved artifacts by preventing access to them
except at a few locations. A more attractive option is to emulate
obsolete computers on future computers.

Note that all of these proposed preservation approaches —
except for doing nothing — rely on saving bitstreams, assuming
that the use of formal descriptions would involve digital encoding
of some sort. These bitstreams must be repeatedly copied to new
storage media before their current media become unreadable or
obsolete. The following discussion assumes that this will be done.

Making the New OId

Emulation is the use of a new computer to “impersonate” an
old computer. In other words, an emulator is a program that
runs on the new computer and makes it behave like the old
computer, which allows the new computer to run virtually any
program that originally ran on the old computer, thereby virtu-
ally recreating the old computer. Emulation is a well-under-
stood computer science technique that is often used to avoid the
cost of adding special-purpose hardware, such as modems or
co-processors, to a system or to maintain compatibility with
older equipment, such as terminals or communications devices.
It is typically so successful that users are completely unaware
that it is being employed.

Preserving a digital artifact by means of emulation would
require saving the bitstreams of all the application and sys-
tem software that rendered the artifact on its original com-

40  The Information Management Journal « March/April 2002

puting platform, in addition to the artifact’s own bitstream.
Then whenever the artifact is accessed in the future, its orig-
inal software is retrieved and run under an emulator of its
original computer that runs on some future computer. The
emulator makes the software “think” it is running on its orig-
inal computing platform, so it renders the digital artifact just
as it did originally, within the limits of how well the user
interface can be emulated). The emulation environment
should also allow the user to extract the contents of the arti-
fact and convert it into some future vernacular form (e.g., to
quote or incorporate part of it in some new document), a
process called vernacular extraction. This is analogous to the
way ancient manuscripts and records are used: The originals
are kept for scholarly use and verification purposes, but
modern vernacular copies are allowed (i.e., textual transcrip-
tions, photographs or scanned images, modern-language
renditions, etc.) to be made whenever needed.

This strategy relies on emulating obsolete hardware, not soft-
ware. Under this approach, its original software always renders a
digital artifact, which is far superior to those approaches — or
misinterpretations of this approach — that require writing future
“viewer” programs to recreate the behavior of, or emulate, orig-
inal rendering software. Emulation means hardware emulation.

The potential advantages of using emulation for preserva-
tion are:

« It is the only proposed approach that offers a realistic way of
preserving digital artifacts in their original form.

« It allows saving digital artifacts of any format, simply by sav-
ing appropriate rendering software for that format, requiring
no new software to be written for each additional format to
be preserved.

+ It requires no conversion of individual digital artifacts, there-
by avoiding a potentially huge cost incurred by most other
proposed approaches, as well as greatly reducing the chance
of corruption.

+ It reduces the preservation problem to one of saving bit-
streams, a process that users must be able to
do in any case to preserve the bitstreams of digital artifacts
themselves.

The primary cost of emulation would be the creation of
appropriate emulators.



Making [t 50

Since an emulator is a program, using it ultimately requires
running it on some computer. To emulate an old computer
indefinitely, the user must be able to run a program that emu-
lates the old computer on nearly any future computer. This
requires that future computers be able to perform — either in
hardware or software — all the logical functions that the old
computer performed. Although it may at first appear unlikely
that all future computing paradigms, such as quantum compu-
tation, will subsume the capabilities of current computers, this
is actually quite plausible since these capabilities are founded on
simple, universal, mathematical, and logical operations whose
future utility seems certain no matter what new capabilities are
added to them. In any case, this is far more likely than the belief
that future application programs will subsume the entire behav-
ior of current digital formats.

If an emulator of a given computer is to be validated against
the machine that it emulates, it should be implemented before
that machine becomes unusable. There is normally some time
during which an old platform is still usable while a new plat-
form is gaining popularity, so it should generally be possible to
write an emulator of the old platform that runs on the new plat-
form and validate its behavior during this window. But how can
this emulator be made to run on future platforms that will not
come into being until long after the old platform is obsolete?
Two alternative and compatible strategies for doing this are
chained emulation and rehosted emulation.

Chained Emulation

Consider computer platforms of different generations, such
as gen-1, gen-2. A transition to a new computer that is backward
compatible with a previous computer, such as that from the
Intel 486 to the Pentium, need not constitute a new generation.
An emulator of a gen-1 computer is denoted that runs on a gen-
J computer as em1:]. So em1:2 would emulate a gen-1 comput-
er by running on a gen-2 computer. An emulator like this one,
which spans just two generations

* Before gen-2 hardware becomes obsolete, write emulator
em?2:3 and run all gen-2 software under em2:3 in the future.
Since em1:2 is gen-2 software, it too will run under em2:3, so
run gen-1 software under em1:2 running under em2:3.

* Before gen-3 hardware becomes obsolete, write emulator
em3:4 and in all future generations:

* Run all gen-3 software under em3:4.
+ Run all gen-2 software under em2:3 under em3:4.

+ Run all gen-1 software under em1:2 under em2:3 under
em3:4.

Under this scheme, each bi-generational emulator can be
written using different programming methods and lan-
guages. Once it exists in executable, or “binary,” form, it can
be considered a “black box” forever after and saved as a bit-
stream. Its source code need never be re-examined or recom-
piled — or even saved - since it will always run as binary
object code under future emulators. (Note that the vast
majority of software is used as black-box object code. If the
user needed to modify it or understand how it worked, it
would be of little practical value.)

It may seem that chained emulation risks cumulative errors
analogous to those encountered in migration, but if program P
renders a given gen-1 artifact properly under em1:2 when em1:2
is first written, P should continue to work the same way so long
as em1:2 can be run. An emulator of gen-i hardware captures
the behavior of that hardware for all time, thereby ensuring that
gen-i software will always have the virtual hardware it needs to
run correctly.

Chained emulation does incur a performance penalty since
many layers of emulation may need to be run in the future;
however, if each hardware generation continues to be faster than
the last, this should not be a serious problem.

(that is, eml:], for J=1+1), will be
called a bi-generational emulator.
Chained emulation involves run-
ning each bi-generational emulator
under the next one (see figure at right).
An example would be running em1:2
under em?2:3 under em3:4 as a way of o
running an emulator of a gen-1 plat- s/w
form on a gen-4 platform. The follow-
ing explains how to make this work.

generation - 1

artifacts

runs on
* Before gen-1 hardware becomes h/w
obsolete, write emulator em1:2 and
run all gen-1 software under em1:2
in the future. (Note that eml:2 is
itself gen-2 software since it runs
on gen-2 hardware.)

rendered by

Chained Emulation

generation - 2
artifacts

generation - 3
artifacts

rendered by

en-2

rendering gs/w

rendered by

em1:2

rendering
s/w

em2:3

generation - 2
h/w runs on

generation - 3
h/w

March/April 2002 « The Information Management Journal 41




Rehosted Emulation

generation - 1

artifacts
generation - 2

rendered by artifacts

rendered by

rendering

rendering

em1:2 S/

generation - 2
h/w

em2:3

eneration - 1

generation - 3

etc.) for rehosting, so if all of these are
saved, they can be used to perform
chained emulation if it becomes too
difficult or expensive to rehost all old
emulators on some future generation
of hardware. Rehosting can therefore
be thought of as an option that can be
reserved for cases when performance
or efficiency is of concern.

Production Notes

Of course, each hardware genera-
tion typically consists of a number of
different computer platforms, making
it necessary to emulate each platform
h/w of the previous generation on at least
one platform of each new generation.

generation - 3
artifacts

rendered by

(LI TsA gen - 3
s/w s/w

runs on

Rehosted Emulation

Alternatively, before gen-2 becomes obsolete, the user might
rehost em1:2 to run on a gen-3 computer, producing em1:3 (see
figure above). Running this on the gen-3 platform would direct-
ly emulate the gen-1 platform without the need for chained
emulation. It could be similarly rehosted every previous emula-
tor on each new generation in addition to creating new bi-gen-
erational emulators, producing eml:2, eml1:3, em2:3, eml:4,
em2:4, em3:4, etc. To make this work:

* Before gen-1 hardware becomes obsolete, write emulator
eml:2 and run all gen-1 software under em1:2 during gen-2
as when chaining.

* Before gen-2 hardware becomes obsolete, write emulator
em?2:3 and run all gen-2 software under em2:3 during gen-3
as when chaining; but also rehost em1:2 on gen-3 hardware,
producing eml!:3, and run all gen-1 software under eml1:3
during gen-3. Save em1:2 for use in chaining, as a fallback.

* Before gen-3 hardware becomes obsolete, write emulator
em3:4 and run all gen-3 software under em3:4 during gen-4
as when chaining; but also rehost em1:2 (or em1:3) on gen-4
hardware, producing em1:4, and rehost em2:3 on gen-4 hard-
ware, producing em2:4. Save eml:2 and em2:3 for use in
chaining, as a fallback. Then during gen-4:

* Run all gen-3 software under em3:4
+ Run all gen-2 software under em?2:4

+ Run all gen-1 software under em1:4

This is more efficient than chaining since it eliminates the
need to run one emulator under another. It would, however,
require creating the same new bi-generational emulator for each
generation that is required for chained emulation. It would also
require rehosting all previous emulators on every new genera-
tion, which involves much more work.

The two approaches, however, are not incompatible. The user
must still create bi-generational emulators (em1:2, em2:3, em3:4,

42  The Information Management Journal « March/April 2002

Even using chaining, multiple bi-gen-
erational emulators will therefore have to be written for each
new generation, whereas rehosting requires many additional
emulators. This suggests the need for standardized, accepted
techniques to facilitate producing emulators. Two such tech-
niques might be:

+ Write emulators in a single, standardized language that is well
formalized and semantically rigorous. Also write a single
interpreter or translator program for this language for each
new hardware platform, thereby enabling all emulators writ-
ten in this language to run on that platform. This emulator
language might be a formal high-level language or a minimal,
simplified language such as a subset of C (which David
Holdsworth, co-author of Emulation, Preservation and
Abstraction, refers to as “C=").

+ Write all emulators to run on a virtual machine (VM) so that
rehosting this VM onto future generations of hardware will
allow all emulators to run on that hardware without addi-
tional rehosting. This idea is elaborated below.

A virtual machine is actually a program that runs on some host
computer and makes the host impersonate a different computer.
In this sense a VM is an emulator but it typically emulates an
imaginary, or virtual, machine that would never have needed to
exist as hardware. A well-known example is the Java VM (JVM).
All Java programs are written to run under the JVM, which in
turn can be implemented — hosted — on a wide variety of hard-
ware platforms. This greatly simplifies rehosting. Instead of hav-
ing to rewrite every Java program to run on every different hard-
ware platform, the user would merely rewrite the single program
that implements the JVM. Once the JVM is hosted on a given
hardware platform, it can, in principle, run any Java program.

If all emulators were written to run on a single “emulation
virtual machine” (EVM), then they could all be rehosted at once
on a new hardware platform simply by implementing or rehost-
ing the EVM on that platform. The Java VM is not ideally suit-
ed to being an EVM, but it would be well worth developing an



EVM. Ray Lorie at IBM, Almaden is designing a universal virtu-
al machine (UVM) as a candidate EVM. Of course, since noth-
ing remains constant, even a standardized EVM must be allowed
to evolve over time, leading to a sequence of EVMs, beginning
with EVM-1 and EVM-2. If old emulators cannot run on a new
EVM, such as EVM-3, then chaining can be used to run them
under emulation simply by writing an emulator of EVM-2 that
runs on EVM-3 (emEVM-2:EVM-3).

R@maining Ques’cions

Although emulation is a promising approach to preserving dig-
ital artifacts, there remain some unanswered questions about it.

Emulating peripheral devices, such as display screens or
sound generators, accurately enough to retain the interface
behavior of obsolete programs may require development and
adoption of new ways of representing certain modalities such
as color or sound fidelity. However, since most digital artifacts
are intended to be usable on a range of different computers,
it should rarely be necessary to emulate the specific character-
istics of a single type of peripheral — let alone a particular,
individual peripheral.

New techniques may be needed to represent hardware and
software configurations so that emulators can run programs
requiring different components. Again, since most digital artifacts
are intended to be usable on a range of computers, they are often
not as sensitive to such differences as they might be. Nevertheless,
a general solution to this problem would be reassuring.

As previously mentioned, future emulation environments
should allow users to extract vernacular versions of old digital
artifacts so that they can use them in their future computing
environments. Unlike migration, which converts artifacts into
vernacular forms repeatedly while discarding the previous ver-
nacular and original forms, emulation should enable vernacular
extraction from the original digital form, which is rendered
under emulation. Exactly how such extraction can be done
remains an open issue, but current emulators of old computers
that run on modern computers hint at a solution. Since such
emulators are implemented using the modern computer’s native
environment and interface, they typically allow extracting text
or images from emulated artifacts by using modern techniques
such as highlighting elements of the emulated display and copy-
ing them with the mouse, after which they can be dropped into
windows running modern applications or saved as modern text
or image objects.

Another question that often arises is who would write emula-
tors. One answer might be computer hardware vendors, who are
uniquely qualified for the task. In any case, if organizations con-
cerned with preservation create a market for emulators, it seems
a foregone conclusion that they will emerge. Related to this
question is the issue of how emulators will be tested and vali-
dated and how standards will be developed. This function might
be handled by a consortia of concerned organizations or by des-
ignated national or international agencies.

Although the use of emulation to preserve digital artifacts
still requires resolving these and other significant issues, its

potential low cost, universality, and ability to preserve originals
— along with all of the inherently digital aspects — indicate it is
well worth pursuing. FI

Jeff Rothenberg is Senior Computer Scientist at the RAND
Corp. He may be contacted at Jeft Rothenberg@acm.org.

References
Gilheany, Steve. “Preserving Information Forever and a Call
for Emulators.” Presented at Digital Libraries Asia 98: The
Digital Era: Implications, Challenges & Issues, 17-20, March
1998, Singapore. Available at www.archivebuilders.com/pdf/
22010v052.pdf (accessed 19 February 2002).

Granger, Stewart. “Emulation as a Digital Preservation
Strategy.” D-Lib Magazine, October 2000. Available at
www.dlib.org/dlib/october00/granger/10granger.html (accessed
19 February 2002).

Holdsworth, David and Paul Wheatley. “Emulation,
Preservation and Abstraction.” Available at
http://129.11.152.25/CAMILEON/dh/ep5.html (accessed 19
February 2002).

Lorie, Raymond. “A Project on Preservation of Digital Data.”
RLG DigiNews. Vol. 5. No. 3 (15 June 2001). Available at
www.rlg.org/preserv/diginews/diginews5-3. html#feature2
(accessed 19 February 2002).

Michelson, Avra and Jeff Rothenberg. “Scholarly
Communication and Information Technology: Exploring
the Impact of Changes in the Research Process on Archives.”
The American Archivist, 55:2 (1992). Available at
www.clir.org/pubs/film/future/aapaper.html (accessed 19
February 2002).

Rothenberg, Jeff. “Ensuring the Longevity of Digital
Documents.” Scientific American 272:1 (January 1995).

—. Avoiding Technological Quicksand: Finding a Viable
Technical Foundation for Digital Preservation. A Report to the
Council on Library & Information Resources (CLIR). January
1999. Available at www.clir.org/pubs/reports/rothenberg/
pub77.pdf (accessed 19 February 2002).

—. Using Emulation to Preserve Digital Documents. A Report
for the Dutch Royal Library (Koninklijke Bibliotheek). July
2000. Available at www.konbib.nl/kb/pr/fonds/emulation/
usingemulation.pdf (accessed 19 February 2002).

READ |

De Witt, Donald, ed. Going Digital: Strategies for Access,
Preservation, and Conversion of Collections to a Digital
Format. The Haworth Press Inc.: Binghamton, NY, 1998.

Sitts, Maxine K. ed. Handbook for Digital Projects: A
Management Tool for Preservation and Access. Northeast
Document Conservation Center: Andover, MA, 2000.

March/April 2002 « The Information Management Journal 43



